Agent Robotics: Learning-from-observation

Katsu Ikeuchi Applied Robotics Research Microsoft

Learning-from-observation (LfO)

Teaching mode

Task model (Minsky's frame)

What-to-do Where-to-do

--- Not direct mimicking ------

- GPT-based encoder observes human demonstration and encode them as task models
- Skill agents corresponding to task models mimics the demonstration using where-to-do

Pre-requisite for GPT-encoding

• GPT knows the collection of skill agents available

Library of manipulation-skill agents

GPT-Encoder (Ver23Sep): verbal + visual

Wake2023chatgpt-IEEE-ACCESS

GPT-Encoder (Ver23Sep): verbal + visual

ChatGPT to get what-to-do

ChatGPT can generate a sequence of what to do (step-by-step action primitives) from natural language input

"move_hand()", "grasp_object()", "move object()", "move_object()", "put_down_object()", "release_object()"

What-to-do

GPT-Encoder (Ver23Sep): verbal + visual

Stop & go teaching

Affordance analyzer

GPT-Encoder (Ver23Nov): VLM + LLM (visual input only)

Wake2023gpt-arXiv

Task models without verbal input using GPT-4

Blue components/lines are text-based information, and the red components are vision-related information

- Symbolic task planner: generated what-to-do
- Affordance analyzer: instantiate the tasks with affordance (i.e., skill parameters)

Skill-agents retrieved from the library

how-to-do

Skill agent to execute primitive actions

Designing agent library

Library of skill agents

- A collection of reusable agents to execute primitive actions on different robot hardware
- Roughly corresponds to "verb" such as pickup or grasp
- Necessary and sufficient set to cover the action domain
 - Grasp library: given by Closure theory
 - Manipulation library: given by Kuhn-Tucker Theory

Manipulation-skill agent

How to represent: face contact relation

Manipulation primitive action causes contact-state transition

"Pick" breaks the face contact

Ikeuchi1994Assembly-IEEE-TRA

State of face contact

State of contact = movable directions

One directional contact

Multi directional contacts

 $X \cdot N \geq 0$

X: possible movable direction N: Constraint Normal direction

Movable directions = Polygonal area on Gaussian sphere $\begin{array}{l} X \cdot N_1 \geq 0 \\ X \cdot N_2 \geq 0 \\ \vdots \\ X \cdot N_n \geq 0 \end{array}$

Movable directions = Northern hemisphere of Gaussian sphere Solution of Simultaneous linear inequality equations

Kuhn-Tucker theory

 $\begin{array}{l} X \cdot N_1 \geq 0 \\ X \cdot N_2 \geq 0 \\ \vdots \\ X \cdot N_n \geq 0 \end{array}$

Simultaneous linear inequality equations

Kuhn-Tucker theory

Solution areas of the equations can be characterized into the following the classes

Possible transitions (possible primitive actions)

7 X 7 =49

49 transitions??? 49 primitive actions???

Physically Possible transitions

Physically possible:20 transitions20 primitive actions

Some examples From NC

Some examples from PC

Frequently appeared transitions in YouTube

YouTube appear: 6 transitions 6 tasks

Physical manipulation agents

Translation tasks

Rotation tasks

6 translation tasks

3 rotation tasks

Tool-env common sense:

Common-sense: while wiping, do not detach from the table surface

Physical & Semantic constraints

 Physical constraint: movable only upper directions due to the table surface

Physical surface

• Semantic constraint: for wiping, not to detach from the table

surface

Semantic surface (common-sense representation)

Ikeuchi2023semantic-IJRR

Semantic constraints extracted from YouTube cocking video

Semantic manipulation agents

Translation tasks

Rotation tasks

10 Translation tasks

6 rotation tasks

Agents in the current library

- PTG1
 - Picking
 - Placing
 - Bringing
- PTG3
 - DrawerOpening
 - DrawerClosing
 - DrawerAdjusting
- PTG5
 - DoorOpening
 - DoorClosing
 - Door Adjusting

- STG1
 - Bring-carefully

STG2
 Wiping

Takamatsu2023Designing-arXiv

RL training of agents

Maintain/Detach/Constraint dimension

State name	DOFs	Admissible translation directions on the Gaussian sphere & Dimensions
NC Non-contact translation	3	NC (M=3, D=0, C=0)
PC Partial contact translation	2.5	PC1(M=2,D=1, C=0) PC2(M=1, D=2, C=0) PCN (M=0,D=3, C=0)
TR Translation contact translation	2	TR(M=2, D=0, C=1)
OT One-way translation contact translation	1.5	OT1(M=1, D=1, C=1) OT2(M=0, D=2, C=1)
PR Prismatic contact translation	1	PR(M=1, D=0, C=2)
OP One-way prismatic contact translation	0.5	OP(M=0, D=1, C=2)
FT Fully contact translation	0	FT(M=0, D=0, C=3)

Dimension transition provides control laws


```
If S = goal-s AND T = goal-t AND U = goal-u,
then reward
```


Motion direction (S):Maintenance to Detachment \rightarrow force controlPerpendicular direction (T):Maintenance to Maintenance \rightarrow position controlPerpendicular direction (U):Maintenance to Maintenance \rightarrow position control

If F+s > delta-zero AND T = goal-t AND U = goal-u, then reward

Motion direction (S):Maintenance to Maintenance \rightarrow position controlPerpendicular direction (T):Maintenance to Constraint \rightarrow visual control then force controlPerpendicular direction (U):Maintenance to Constraint \rightarrow visual control then force control

If Before Transition AND |T – feature-along-t-direction | > delta-gap, then penalty If Before Transition AND |U – feature-along-u-direction | > delta-gap, then penalty If AfterTransition AND F-t > delta-collision, then penalty If AfterTransition AND F-u > delta-collision, then penalty If S = goal-s, then reward U S: motion direction T T: perpendicular to motion U:Perpendicular to motion

	Start	End	Example	position	Force	Vision	Control
Bring	NC: 3,0,0	NC: 3,0,0	$\square \to \square$	S: (M-M) T: (M-M) U: (M-M)			If S = goal-s AND T = goal-t AND U = goal-u, then reward
Place	NC: 3,0,0	PC: 2,1,0	$\vec{v} \rightarrow \boxed{\vec{c}}$	T: (M-M) U: (M-M)	S: (M-D)		If F+s > delta-zero AND T = goal-t AND U = goal-u, then reward
	NC: 3,0,0	TR: 2,0,1		S: (M-M) T: (M-M)		U: (M-C)	If BeforTransition AND U – feature U > delta-gap, then penalty If AfterTransition AND F-u > delta-collision, then penalty If S = goa-s AND T = goal-t, then reward
	NC: 3,0,0	OT: 1,1,1		S: (M-M)		T: (M-D) U: (M-C)	If BeforeTransition AND T – feature t > delta-gap, then penalty If BeforeTransition AND U – feature u > delta-gap, then penaly If AfterTransition AND F-t > delta-collision, then penalty If AfterTransition AND F-t < delta-zero, then penalty If After Transition AND F-u > delta-collision, then penalty If S = goal-s, then reward
insert	NC: 3,0,0	PR: 1,0,2		S: (M-M)		T: (M-C) U: (M-C)	If BeforeTransition AND T – feature-t > delta-gap, then penalty If Before Transition AND U – feature-u > delta-gap, then penalty If AfterTransition AND F-t > delta-collision, then penalty If AfterTrassition AND F-u > delta-collision, then penalty If S = goal-s, then reward

RL-trained PTG33 agent (Drawer-close)

RL-trained PTG51 agent (Door opening)

If Force-y > delta-collision, penalty If Force-z > delta-collision, penalty If X = Goal-x, reward

Nextage @Shinagawa

Fetch @Redmond

RL-trained STG2 agent (wipe)

Insert (NC-PR)

Maintenance = 1 Detachment = 0 Constraint = 2

If |T – feature-t | > delta-gap, then penalty If |U – feature-u | > delta-gap, then penalty If S = goal-S, then reward

Grasp-skill agent (Current version)

Current

Grasp types

• Grasping depends on the goal of the task sequence

Need power to push

Need control to point

Need power and control to write

Grasp taxonomy in Robotics community

Felix et al

PalmPadSidePadSic3-52-522-32-42-5233-422-32-42-53Large Diameter Diameter Name Blage Medium Wrap Power DistImage Sphere-4 FingerImage Sphere-4 FingerImage Sphere-4 FingerImage Sphere-4 FingerImage Sphere-4 FingerImage FingerImag	Power						Intermediate			Precision				
3-5. 2-5. 2 2-3. 2-4. 2-5. 3 3-4. 2 2-3. 2-4. 2-5. 3 Large Diameter Ring Sphere-3 Finger Extension Type Adduction Adduction Thumb-1 Finger Thumb-2 Finger Thumb-2 Finger Thumb-4 Finger <	Palm		Pad			Side			Pad				Side	
Large Diameter Diameter Small Diameter Wrap Wrap Wrap Wrap Powert Disk	3-5	2-5	2	2-3	2-4	2-5	2	3	3-4	2	2-3	2-4	2-5	
Power Sphere		Large Diameter Small Diameter Medium Wrap Medium Wrap Power Disk Power Sphere	Ring	Sphere-3 Finger	Extension Type Sphere-4 Finger	Distal	Adduction		Tripod Variation	Thumb- Index Finger Finch Inferior Pincer	Thumb-2 Finger	Thumb-3 Finger Quadpod	Thumb-4 Finger Precision Disk Precision Sphere	Writing Tripod

Purpose of task: from taxonomy to closure

Three grasp agents prepared

Each contact-web based agent (end-2-end system)

Super quadric

quadric
$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$$

super quadric $\left(\frac{x}{a}\right)^{\alpha} + \left(\frac{y}{b}\right)^{\beta} + \left(\frac{z}{d}\right)^{\gamma} = 1$
Size parameter: a, b, c
Shape parameter: α, β, γ
Shape parameter: α, β, γ

Shape variations due to parameters: α , β , γ

Reinforcement learning

Hint information

- Contact web
- Approach direction

State

- current finger positions
- current contact force direction

Train various objects of the same grasp

learn against different size and shapes

The same agent can grasp various shaped objects

Passive-force agent

Active-force agent

The same object with two different agents

Errant robot project

Errand humanoid

Key components

Teaching

- Learning from observation for manipulation
- HoloLens based map-making & navigation

Execution

- ChatGPT-based program generation
- TSS execution platform with skill libraries

Project G.U. 自由

Adaptive Prompts for Onsite Teaching: Errand-Running Robots using LLM powered w/ HoloLens

Diachronic discussion

Learning-from-observation

Learning-from-observation

Hardware independent essence of the task

Observation

How to obtain the essence?

Top down approach

Bottom up approach

 Design the task models based on Robotics theories • Learn everything from scratch

Kanade's principle:

Do not apply learning approaches to those you can solve without them

Top-down LfO: starting point

We started this effort 30 years ago at CMU!

Ikeuchi & Reddy CMU-RI 89

Object recognition & Task recognition

instantiated task model

Ikeuchi, Suehiro TRO94

Key Idea: Essence = State transition

Domains explore the possible sets of states

Two blocks Machine parts

1990

Polyhedron

1988

2000

Rope

Dance

2010

Household

2020

Gesture

Polyhedral world: state = face-contact

Takamatsu et.al. "assembly tasks" IJRR2007

Machine parts: States = Parts mating

Parts mating

Miura & Ikeuchi Task PAMI98

Knot-tying: Status = P-data in the knot theory

Reidemister move (action primitives)

States = P data in the Knot theory

Execution mode

Takamatsu et. al., "Knot-tying," TRA 2006

Human dance: State = Key pose & foot contact

Key pose (Labanotation)

Foot contact

Nakaoka et. al. ICRA2003

Synchronic discussion

Learning-from-observation

Imitation learning vs LfO

Human demonstration

- Pick up a dish
 <bring trajectory>
- Pick up a sponge
 <bring trajectory>
- Wipe
-

- Place the dish
 <bring trajectory>
- Place the sponge

Imitation learning = mimic all trajectories

- It works only when the object and the environment are exactly same because the system mimics all the trajectories
- Error by demonstrator will be mimicked -> fatigue of the operator

Learning from observation

• Only mimic where it important

LfO = symbolic teleoperation

Task-encoding based on GPT: what-to-do & where-to-do

Cerebrum vs Cerebellum

Amount of reaction/disturbance from the environment

Defense of only vision (not force)

- In children's imitation, the connection with the mother is limited to the visual world only
- Visual observation is done through Piaget's schema; not entire actions
 - in LfO, Affordance analyzer using Minsky's frame (Task model)
- Force information is not shared; force feedback is learned separately through *circular reactions*

(Reinforcement learning (?))

LfO and Piaget's theory

- Sensormotor stage
 - Physical sensations
 - Coordinating their body
- Preoperational stage
 - Symbolic thought
 - Ego-centric view
- Concrete operational stage

11-

- Logical thought
- Decentering view
- Formal operational stage
 - Scientific reasoning

• Circular reactions

- Repeat same actions
 - \rightarrow Hand-eye calibration (?)
 - → Reinforcement learning (?)

Imitation behavior

Hand actions & face expressions
→ Learning-from-observation (?)

Summary

- Learning from observation
 - GPT-based encoding
 - TSS-skill library
 - Manipulation agent library
 - Grasp agent library
- Diachronic discussion
- Synchronic discussion

Recent publication & Team

GPT-encoder

- Wake et. al. : arXiv:2311.12015 (2023)
- GPT-4V(ision) for robotics

Task/skill model design

- Ikeuchi et.al.: IJRR (2024)
- Semantic constraints to represent common sense

Skill model training

- Takamatsu et. al.: arXiv:2403.02316(2024)
- Designing library of skill-agents for hardware-level reusability

TSS-Platform

- Sasabuchi el.al.: IEEE RAL (2020)
- Task-oriented motion mapping on robots

Jun Takamatsu

Kazu Sasabuchi

Atsu Kanehira