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Learning-from-observation (LfO)

Task model
(Minsky’s frame)
What-te-do 9

Fow-to-do
VWhere-to-do

Teaching mode Execution mode



LfO (indirect mimicking)

Task models

What-to-do
where-to-do

GPT-based g RL-trained
encoder skill agents
(cerebrum) | (Cerebellum) |
Human demonstration Robot execution

* GPT-based encoder observes human demonstration and encode them as task models
« Skill agents corresponding to task models mimics the demonstration using where-to-do



Pre-requisite for GPT-encoding

* GPT knows the collection of skill agents available

Library of grasp-skill agents

Passive Form Passive Force Active Force
skill agent skill agent skill agent

Closure theory

Library of manipulation-skill agents

Pick skill Drawer-open Door-open
agent skill agent skill agent
Bring skill Drawer-adjust Door-adjust
agent skill agent skill agent
Place skill Drawer-close Door-close
agent skill agent skill agent

L

Kuhn-Tucker theory



GPT-Encoder (Ver23Sep): verbal + visual

Verbal
instruction
“Grasp a

GPT

Visual
demonstrations

R | Affordance
| | Analyzer

Wake2023chatgpt-IEEE-ACCESS




GPT-Encoder (Ver23Sep): verbal + visual

Verba_l Short sentence
instruction

“Grasp a




ChatGPT to get what-to-do

ChatGPT can generate a sequence of what to do (step-by-step
action primitives) from natural language input

"move hand()",

ChatGPT "gr‘asp_ObjeCt()”)

"move object()",

"move object()",

— "put _down object()",
::J "release object()"”

Prompt
templates What-to-do




GPT-Encoder (Ver23Sep): verbal + visual

What-to-do

Visual
demonstrations

- Affordance
L |1 Analyzer
adll

Stop & go teaching



Affordance analyzer

[
GPT-output Retrieved Task models |

Move_hand() Where to move hand —

Which-hand

Which-object

Grasp_object() From which direction to approach Approzch direction

Labanotation

Move_object() To where to move the object

Abstract task models
(Minsky’s frames)

what-to~-do. where-to-dao
*

e Where-to-do

ﬁ ) = Necessary parameters for execution

-  Defined to each what-to-do

: s “ * Minsky’s frame type design
Segmentation

. Speed 10 « Deamon to extract from input video
I
Grounding T — P

\ELGEIRGEIEFirst, move your hand here.

‘ 8 Movie =] X
N




GPT-Encoder (Ver23Nov): VLM + LLM (visual input only)

Visual & (verbal) What-to-do

demonstrations

Where-to-do

Wake2023gpt-arXiv



Task models without verbal input using GPT-4

GPT4-based task analyzer Affordance analyzer

Open-vocab Hand-object
object detector dist. FOA

GPT4V

Video textual Grasp/release grasp/release
analyzer instruction video clips time and location

_ v Task Symbolic Hand Affordance Embodied
Video Scene Environmental planner task model loc. FOA extractor task model
demonstration analyzer description GPT4

GPT4V

Blue components/lines are text-based information, and the red components are vision-related information

« Symbolic task planner: generated what-to-do
« Affordance analyzer: instantiate the tasks with affordance (i.e., skill parameters)




Skill-agents retrieved from the library

“vinatiodo [l

Skill agents

Where-to-do =

Skill agent Library

haw-ta-do




Skill agent to execute primitive actions

Drawer-open (PTG31)
Task model

AXxis direction —
Where-to-param

from demo

Force Visual

feedback | | feedback IK solver

Demo world Exec world

—ﬂ—————————————

Hint & Goal

{ skill-agent }

Hand motion




Task models
e N\

3
= 4 A
\ ) RL-trained

@\_/ Skill agents

- )

GPT-
based
encoder 4 ™

RL-trained
Skill agents

\_ /




Designing agent library




Library of skill agents

* A collection of reusable agents to execute primitive
actions on different robot hardware

 Roughly corresponds to “verb” such as pickup or grasp

* Necessary and sufficient set to cover the action domain
e Grasp library: given by Closure theory
« Manipulation library: given by Kuhn-Tucker Theory

Library of Library of
Grasp-skill Manipulation-skill
agents theory

agents




Manipulation-skill agent




How to represent: face contact relation

Manipulation primitive action causes contact-state transition

=
/" face contec Verb “Pick”

“Pick’ breaks the face contact

Ikeuchil994Assembly-IEEE-TRA



State of face contact

State of contact = movable directions

One directional contact Multi directional contacts

X-N =0

X: possible movable direction
N: Constraint Normal direction

X N

Polygonal area on
Gaussian sphere

W L
Ny 4
l Movable directions =

Movable directions = Solution of Simultaneous linear
Northern hemisphere of Gaussian sphere Inequality equations




Kuhn-Tucker theory

X‘Nl 20
X‘Nz 20

X N, >0

Simultaneous linear inequality
equations

>

Kuhn-Tucker theory

Solution areas of the equations
can be characterized into the
following the classes

4

PC2 (1,2,0)

PCN (0,3,0)

TP (2,0,1)

OT1(1,1,1)

oT2 (0,2,1)

FT (0,0,3)
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49 transitions???

49 primitive actions???
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Physically possible:

20 transitions

PC1(2,1,0)

OF

OoT1(1,1,1)

1Ly

- :

OP (0,1,2)
FT (0,0,3)
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20 primitive actions




Some examples ---_
FrO m N C B Q Q L=m Often appear in YouTube

5

Place
@ "> LT 7 Often appear in YouTube

TR:O A
Q -8

In industrial applications,

=\ Yes, but in service robot
Not often




Some examples [l
from PC Pick PC: NC:Q <o\ - O Often appear in YouTube

Wipe PC: PC:
N2\ > N\_=_\  Discuss later

TR:

T




YouTube appear:
6 transitions
6 tasks

PC1 (2 1,0)
oT1 (1 1,1)

\
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Drawer-open =__ Drawer-close

Z

PC1(2,1 0}
oT1 (1 1,1)
PR (1,0,2)
OP (0,1,2)
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Drawer-open = Drawer-close
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3 rotation tasks

6 translation tasks




Tool-env common sense:

Common-sense: while wiping, do not detach from the
table surface




Physical & Semantic constraints

* Physical constraint: movable * Semantic constraint: for wiping,
only upper directions due to not to detach from the table
the table surface surface Semantic surface

(common-sense

Physical surface )
representation)

Ikeuchi2023semantic-1JRR



Semantic constraints extracted from YouTube cocking video

Semantic Ping ol Semantic

Sphere
&

Semantic Walls éﬂ7 Semantic nge

Semantic Tube

w, o3




Translation tasks

-

Pick-carefully Place-carefully ¢

S
ST N < :
=

Peel-start ' Peel-end

FT(0,0,3)

——\

Hold

10 Translation tasks

Semantic manipulation agents

Rotation tasks

TP (2,0,1)

TP (2,0,1)

OT1(1,1,1)

OT1(1,1,1)

Pour-end

FT (0,0,3)

Hold

FT (0,0,3) FT (0,0,3)

6 rotation tasks



Agents in the current library

e PTG1
* Picking
* Placing
* Bringing

* PTG3

¢ STG1
* Bring-carefully

« STG2

 DrawerAdjusting

e PTG5
* DoorOpening —j

* DoorClosing Vs
* Door Adjusting

i
* DrawerOpening * Wiping
* DrawerClosing

o

Takamatsu2023Designing-arXiv




RL training of agents




Maintain/Detach/Constraint dimension

/ /@/

Pure detachment Constraint direction

direction

Maintenance
Maintenance directions . directions

Maintenance = 2 DoFs

Maintenance = 2 DoFs Detachment =0 DoFs (2,0, 1)
Detachment = 1 DoFs (2,1,0) Constraint = 1 DoFs

Constraint = 0 DoFs




State name Admissible translation directions on the Gaussian sphere & Dimensions

NC NC (M=3, D=0, C=0)

Non-contact
translation

PC PC1(M=2,D=1, C=0) PC2(M=1, D=2, C=0)

. PCN (M=0,D=3, C=0)
Partial contact
translation

TR TR(M=2, D=0, C=1)

Translation contact
translation

oT 5 | 0T1(M=1, D=1, C=1) 0OT2(M=0, D=2, C=1)
One-way translation Q
contact translation :

PR PR(M=1, D=0, C=2)

Prismatic contact
translation

OP 5 | OP(M=0, D=1, C=2)

One-way prismatic
contact translation

FT FT(M=0, D=0, C=3)

Fully contact
translation




Dimension transition provides control laws

S: motion direction

B I’i N g T: perpendicular to motion
U:Perpendicular to motion

(M,D,C)=(3,0,0) mm) (M, D,C)=(3,0,0)

Motion direction (S): Maintenance to Maintenance - Position control
Perpendicular direction (T): Maintenance to Maintenance = Position control
Perpendicular direction (U): Maintenance to Maintenance = Position control

If S = goal-s AND T = goal-t AND U = goal-u,
then reward




Motion direction (S): Maintenance to Detachment = force control
Perpendicular direction (T): Maintenance to Maintenance = position control
Perpendicular direction (U): Maintenance to Maintenance = position control

If F+s > delta-zero AND T = goal-t AND U = goal-u,
then reward




odl

(M, D, C)=(3,0,0) : (M,D,C)=(1,0,2)

Motion direction (S): Maintenance to Maintenance = position control
Perpendicular direction (T): Maintenance to Constraint = visual control then force control
Perpendicular direction (U): Maintenance to Constraint = visual control then force control

If Before Transition AND |T — feature-along-t-direction | > delta-gap, then penalty
If Before Transition AND |U — feature-along-u-direction | > delta-gap, then penalty
If AfterTransition AND F-t > delta-collision, then penalty

If AfterTrasnsition AND F-u > delta-collision, then penalty

If S = goal-s, then reward




S: motion direction
T: perpendicular to motion
U:Perpendicular to motion

-WMMWW

Brlng NC:3,0,0 NC:3,0,0 S: (M-M) If S = goal-s AND T = goal-t AND U = goal-u,

. ) then reward
O Q J—0 E:((Tn-n))

Place . PC:2,1,0 T: (M-M) S: (M-D) If F+s > delta-zero AND T = goal-t AND U = goal-u,
U: (M-M) then reward

S: (M-M) . - If BeforTransition AND |U — feature U| > delta-gap, then penalty
If AfterTransition AND F-u > delta-collision, then penalty
T: (M'M) If S = goa-s AND T = goal-t, then reward

S: (M-M) . - If BeforeTransition AND | T —feature t | > delta-gap, then penalty
If BeforeTransition AND | U — feature u | > delta-gap, then penaly
If AfterTransition AND F-t > delta-collision, then penalty
If AfterTransition AND F-t < delta-zero, then penalty
If After Transition AND F-u > delta-collision, then penalty
If S = goal-s, then reward

If BeforeTransition AND |T — feature-t | > delta-gap, then penalty
If Before Transition AND |U - feature-u | > delta-gap, then penalty

NC: 3,0,0 : : (M- 1 (M-
Q . - If AfterTransition AND F-t > delta-collision, then penalty

insert

If AfterTrasnsition AND F-u > delta-collision, then penalty
If S = goal-s, then reward




RL-trained PTG33 agent (Drawer-close)

=
fe

If Force-y > delta-collision, penalty
If Force-z > delta-collision, penalty
If Force-x > delta-zero, reward

U

o Step
K RL learning curve /

r -

¢

~
Ly

Force-x




RL-trained PTG51 agent (Door opening)

If Force-y > delta-collision, penalty 3 R
If Force-z > delta-collision, penalty -
If X = Goal-x, reward .
OR RV

Fetch @Redmond



RL-trained STG2 agent (wipe)

= a2
> N
e
B 3 f
.

Force along Zz-axis

If Force-y > delta-collision, penalty _

; \ If Force-y > delta-zero, penalty
If X = Goal-x, reward




Insert (NC-PR)

Maintenance = 3
Detachment = 0
Constraint=0

If | T - feature-t | > delta-gap, then penalty
If |U - feature-u | > delta-gap, then penalty
If S=goal-S, then reward

Maintenance =1
Detachment= 0
Constraint = 2




Grasp-skill agent (Current version)

Current




Grasp types

* Grasping depends on the goal of the task sequence

Need control to point Need power and control
to write




Grasp taxonomy in Robotics community

Felix et al

Intermediate
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Pad
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Purpose of task: from taxonomy to closure

Passive force closure

Passive form closure

8y

Active force Closure

Grasp taxonomy Closure theory (Yoshlkawa)

Passive force
contact-web

© o

OX®)
Passive form
contact-web

Active-force
contact-web

\ Contact-web (SeedNoid)/




Three grasp agents prepared

RGBD ‘[

Pre-trained CNN
for passive-force
contact-web

Passive force

\contact-web )

Pre-trained agent
for passive-force
contact-web

RGBD {

Pre-trained CNN
for passive-form
contact-web

Passive form

\ contact-web > )

Pre-trained agent
for passive-form
contact-web

RGBD {

Pre-trained CNN
for active-force
contact-web

[ )

Active-force
contact-web

Pre-trained agent
for active-force
contact-web

Saito&Sasabuchi2023Constraint-MDPI




Each contact-web based agent (end-2-end system)

Pre-trained CNN
for active-force-closure
contact-web
(Observation sub-agent)

Active-force-closure
Contact-web

Pre-trained sub-agent
for active-force-closure
contact-web
(Execution sub-agent)




Super quadric

quadric

{ Size parameter: a, b, ¢

Shape parameter: o, 8,y

Shape variations due to parameters: a, 8, y




Training CNN

—  Size parameter: a, b, c Shape parameter: a, 3,y
|

l

Super quadric

Training data —

Depth image ‘ , Contact web position

—

-~ ~ < _ ' \
Trained w N
CNN — ). — \ , -




Reinforcement learning

N (s

Hint information State \
- Contact web - current finger positions
- Approach direction - current contact force direction




Train various objects of the same grasp

MySimulator (Live) Simulator instance: 1334384371_10.244.79.137 / Il Pause chart

learn against different size and shapes




The same agent can grasp various shaped objects




Passive-force agent Active-force agent

The same object with two different agents




Errant robot project




Errand humanoid

4 N

Human order: ChatGPT
“Go to Kitchen interface inTSS
and clean up the
Skill library In
TSS

\_ %

4 N

« LfO generated program

° Sym bolic map Humanoid at Kitchen




Key components

e Learning from observation for manipulation
* HoloLens based map-making & navigation

e ChatGPT-based program generation
e TSS execution platform with skill libraries




=@ Microsoft

Project G.U.

Adaptive Prompts for Onsite Teaching:
Errand-Running Robots using LLM
powered w/ HoloLens




Diachronic discussion
Learning-from-observation




Learning-from-observation

Relation-1 Relation-2

Hardware independent
essence of the task

Observation Performance




How to obtain the essence?

Top down approach Bottom up approach

* Design the task models  Learn everything from scratch
based on Robotics theories

Kanade’s principle:

Do not apply learning approaches to those you can solve without them




Top-down LfO: starting point

We started this effort 30 years ago at CMU! lkeuchi & Reddy CMU-RI 89



Object recognition & Task recognition

scene

7

| world model
with instantiated
object models

abstract

object models

AN

Marr 82

scene-1 scene-2 scene-3

| |

abstract

/ task models

e

L

Ikeuchi, Suehiro TRO94

instantiated task model



Key ldea: Essence = State transition

IPut B side of A

lPut B on top of A

State transition Necessary skills




Domains explore the possible sets of states

Dance Household

Two blocks Machine parts

1988 1990

Polyhedron




Polyhedral world: state = face-contact

{

»
]
P ‘\

m o\,
] |

(01100121) (10100111)  (20010021) (02010020

Extracted state transitions &
required skills Takamatsu et.al. “assembly tasks” IJRR2007

\ p I “
! :
k ]
j
pp—

N
i "

‘ 2 »

o . I 1




Machine parts: States = Parts mating

Screw-align Gear-align

Parts mating

Miura & lkeuchi Task PAMI98



Knot-tying: Status = P-data in the knot theory

/P-data representation

Reidemister move (action primitives)

’ ( ) Reidemeister

E ove [
Reidemeister move 11 { ‘ » [E‘)
| :
K ‘/\l/\ . \%_Q Reidemeister move 111 / Exe C u t | 0 nm Od e

States = P data in the Knot theory Takamatsu et. al., “Knot-tying,” TRA 2006

m




Human dance: State = Key pose & foot contact

(right step)

Foot contact

Nakaoka et. al. ICRA2003



Synchronic discussion
Learning-from-observation




Imitation learning vs LfO

Imitation learning = mimic all trajectories

It works only when the object and the
environment are exactly same because
the system mimics all the trajectories

Error by demonstrator will be mimicked -
> fatigue of the operator

Human demonstration

* Pick up adish
<bring trajectory>
* Pick up a sponge

<bring trajectory>
* Wipe

<bring trajectory>
* Place the dish

_ _ Learning from observation
<bring trajectory>

* Only mimic where it important
* Place the sponge




LfO =symbolic teleoperation

» Task-encoding based on GPT: what-to-do & where-to-do

» Task-decoding based agents: how-to-do

Symbolic representation

T

Forward pretrained model Pretrained skill agents
(GPT-base task encoding) (RL-based task decoding)

Cerebrum (?) Cerebellum (?)

?




Cerebrum vs Cerebellum

Task models

Current design
GPT-based Agent-based

Cerebrum (?) Cerebellum (?)
What-to-do How-to-do
Where-to-do

Action domain

Gesture ’I Agent

Navigation + Agent

Manipulation Agent

Locomotion Agent

Amount of reaction/disturbance
from the environment




Defense of only vision (not force)

* In children’s imitation, the connection with the mother is limited
to the visual world only

* Visual observation is done through Piaget's schema; not entire
actions
* In LfO, Affordance analyzer using Minsky’s frame (Task model)

* Force information 1s not shared; force feedback iIs learned
separately through circular reactions

(Reinforcement learning (?))




LfO and Piaget’s theory

e Sensormotor stage _ _
. Physical sensations » Circular reactions

 Coordinating their body  Repeat same actions
- Hand-eye calibration (?)

* Preoperational stage - Reinforcement learning (?)
« Symbolic thought
« Ego-centric view

 Imitation behavior

- Concrete operational stage - Hand actions & face expressions
- Logical thought -> Learning-from-observation (?)

« Decentering view

* Formal operational stage
 Scientific reasoning




Summary

e Learning from observation

« GPT-based encoding

e TSS-skill library

« Manipulation agent library
« Grasp agent library

e Diachronic discussion

e Synchronic discussion




Recent publication & Team

GPT-encoder
« Wake et. al. : arXiv:2311.12015 (2023) Katsu lkeuchi '

* GPT-4V(ision) for robotics Jun Takamatsu

Task/skill model design

 lkeuchi et.al.: IJRR (2024)
« Semantic constraints to represent common sense

Kazu Sasabuchi

 Skill model training

« Takamatsu et. al.: arXiv:2403.02316(2024)
» Designing library of skill-agents for hardware-level reusability

ki Wak
e TSS-Platform Naokd Wake

« Sasabuchi el.al.: IEEE RAL (2020)
» Task-oriented motion mapping on robots

‘i
Atsu Kanehira
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